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a b s t r a c t 

Sex differences are well-established in Alzheimer’s disease (AD) frequency and pathogenesis, but are not 

mechanistically understood. Accelerated epigenetic age has been associated with both cognitive aging 

and AD pathophysiology, but has not been studied by sex in AD or related cognitive impairment. Using 

the ADNI cohort, we found that none of sex, cognitive impairment diagnosis, nor load of APOE ε4 alleles 

(strongest genetic AD risk factor) were associated with epigenetic age acceleration (DNAmAge, Intrinsic 

DNAmAge, PhenoAge, or GrimAge), although females exhibit more accelerated epigenetic aging using the 

Skin & Blood clock in the transition from normal cognition to cognitive impairment than males. 

© 2021 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 

Biological sex and APOE genotype are associated with differ-

ences in Alzheimer’s disease (AD) features including lifetime risk,

AD neuropathology, and cognitive decline; these factors suggest

that the molecular mechanisms underlying AD and its pathogene-

sis may operate in sex- or genotype-dependently ( Alzheimer’s As-

sociation, 2019 ). Recently, biomarkers have been developed to
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measure the biological age of a sample from genome-wide DNA

methylation (DNAm) signatures, resulting in the creation of a met-

ric called epigenetic age. 

A well-known metric of epigenetic age is Horvath’s pan-tissue

“DNAmAge” clock ( Horvath, 2013 ). The DNAmAge clock estimates

biological age of samples in years, and positive deviations of epige-

netic age from chronological age (epigenetic age acceleration) are

postulated to reflect more rapid biological aging, which has been

associated with disease phenotypes including markers of cognitive

function in AD ( Levine et al., 2015 ) and biological variables such as

sex, with men exhibiting more accelerated epigenetic aging than

women ( Horvath, 2013 ). Intrinsic DNAmAge acceleration is a met-

ric independent of age-related changes in relative cell type propor-

tions, used particularly for blood ( Chen et al., 2016 ). 

Epigenetic clocks have also been developed that are more ac-

curate for specific tissues of interest, such as Horvath et al.’s Skin

and Blood clock ( Horvath et al., 2018 ), or Zhang et al.’s blood clock

( Zhang et al., 2019 ). The Zhang clock was designed for accurate

chronological age estimation of samples independent of mortality
 open access article under the CC BY-NC-ND license 
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Table 1 

Basic demographic characteristics of 640 ADNI participants with available blood Il- 

lumina HumanMethylationEPIC microarray DNAm data 

Females (n = 284) Males (n = 356) p value ∗

Age 74.78 ( ±8.03) 76.31 ( ±7.32) < 0.0001 

Baseline diagnosis 

CN 109 (38.38%) 108 (30.34%) 0.04 

CI 175 (61.61%) 248 (69.66%) 

APOE ε4 alleles 

0 169 (59.51%) 200 (56.18%) 0.42 

1 or 2 115 (40.49%) 156 (43.82%) 

CN indicates cognitively normal, CI indicates broadly-defined cognitive impairment 

(early mild cognitive impairment [MCI], late MCI, and Alzheimer’s disease cases). 
∗p values are from Wilcoxon rank sum tests for continuous variables and Fisher’s 

exact tests for categorical. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or pathology ( Zhang et al., 2019 ), while the Skin and Blood clock is

similar to traditional epigenetic clocks and reflects biological aging

of samples, as evidenced by accelerated measurements in cases of

Hutchinson Gilford progeria ( Horvath et al., 2018 ). 

Recently, second generation epigenetic clocks (PhenoAge &

GrimAge) have been constructed by training tissue-specific tools

on relevant biomarkers of health in addition to chronological age.

PhenoAge was developed first by constructing a score reflecting

hazard of mortality based on 42 phenotypic markers in a lon-

gitudinal cohort, and then regressing whole blood DNAm levels

onto the 9 most predictive markers plus chronogological age in

order to predict phenotypic age and mortality risk ( Levine et al.,

2018 ). The GrimAge metric is based on estimating a mortality risk

from blood DNAm-estimators of smoking pack-years and levels of

health-associated plasma proteins ( Lu et al., 2019 ). Time-to-death

was regressed onto these estimators and linearly transformed to

yield an age estimator that is strongly associated with cognitive

aging, cancer, coronary heart disease, and time-to-death ( Lu et al.,

2019 ). 

We hypothesized that sex differences observed in AD may be

associated with sex-specific epigenetic age acceleration metrics

(DNAmAge, Horvath’s Skin & Blood clock, PhenoAge, and GrimAge)

and used data from the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) database to examine associations between epigenetic

age acceleration, cognitive impairment, sex, and biomarkers of AD

risk. 

Methods 

Data were obtained from the ADNI database (adni.loni.usc.edu),

a public-private partnership launched in 2003 led by Principal In-

vestigator Michael W. Weiner, MD. ADNI’s primary goal has been to

test whether serial magnetic resonance imaging, positron emission

tomography, other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression

of mild cognitive impairment (MCI) to early AD. For up-to-date in-

formation, see www.adni-info.org . 

Illumina Infinium HumanMethylationEPIC BeadChip data were

downloaded for 1698 longitudinal blood samples from 640 unique

ADNI participants (n = 284 females, n = 356 males). To increase

power for analyses, diagnosis was categorized into 2 levels: nor-

mal cognition (CN) or cognitively impaired (CI) which was com-

prised of early mild cognitive impairment (MCI), late MCI and AD

( Vasanthakumar et al., 2017 ). See Table 1 below and Supplemen-

tary Table 1 for more detailed demographic information. 

All analyses were performed in R v 3.5.1 ( R Core Team, 2018 ).

DNAmAge was calculated with code from https://dnamage.

genetics.ucla.edu/ ( Horvath, 2013 ); Skin & Blood Age, PhenoAge

and GrimAge were computed with the New DNA Methylation
Age Calculator tool ( https://dnamage.genetics.ucla.edu/ ). DNAmAge,

Skin & Blood Age, PhenoAge, and GrimAge acceleration were cal-

culated as the residuals of each metric regressed on chrono-

logical age, years of education, laboratory blood collection site,

and microarray chip and row; intrinsic epigenetic age accelera-

tion was calculated by regressing DNAmAge on the same covari-

ates plus Houseman DNAm-estimated blood cell type proportions

( Houseman et al., 2012 ). APOE genotype and cerebrospinal fluid

(CSF) levels of tau were available in a subset of cases (n = 533, 46%

female, see Supplementary Table 1). In biological analyses APOE

genotype was collapsed into: (1) carriers of 1 or 2 ε4 alleles and

(2) non-carriers of ε4 risk alleles. 

Results 

We first investigated whether sex and/or CI diagnosis were as-

sociated with epigenetic age acceleration metrics (DNAmAge, In-

trinsic DNAmAge, Skin & Blood age, PhenoAge, or GrimAge) in

ADNI blood samples using linear mixed effect models with fixed

effects of patient sex, diagnosis, age, the interaction of sex and di-

agnosis, and by-individual random intercepts using the lme4 pack-

age in R ( Bates et al., 2015 ). p values were obtained by likelihood

ratio tests comparing full models to models lacking the effect of

interest, implemented for all fixed effects with the afex R package

( Singmann et al., 2016 ), multiple comparisons were adjusted for

using the Bonferroni method. 

None of DNAmAge, Intrinsic DNAmAge, or PhenoAge accelera-

tion metrics were significantly associated with sex, CI diagnosis,

or their interaction; for full details and test statistics see Supple-

mentary Table 2. A likelihood ratio test indicated that the Grim-

Age acceleration model including sex provided a better fit than

the model without sex ( χ2 = 11.06, p Bonferroni < 0.05). On average

males exhibited + 0.42 years faster GrimAge acceleration than fe-

males (B = 0.42, standard error = 0.31, t = 0.67). Similarly, the Skin

& Blood Age acceleration model including an interaction term for

sex and diagnosis provided a better fit than a model without the

interaction term ( χ2 = 12.00, p Bonferroni < 0.05, B = -1.64, standard

error = 0.47, t = -3.47), whereby the slope of the transition from

CI to CN is steeper in females than in males. Post-hoc within-sex

analyses indicated that CI females have significantly higher Skin

& Blood age acceleration than CN females, and that diagnosis is

not significantly associated with Skin & Blood age acceleration in

males, see Supplementary Table 3 and Supplementary Figure 2. 

Based on the hypothesis that age acceleration may be more as-

sociated with levels of relevant biomarkers of AD, we ran a lin-

ear mixed effects model including sex, age, APOE genotype, CSF

tau concentration and sex-APOE and sex-tau interaction terms (all

fixed effects) on DNAmAge acceleration with by-individual random

intercepts. Neither APOE allele load nor CSF tau were significantly

associated with DNAmAge acceleration, nor did these associations

differ by sex. 

Discussion 

We found no significant differences in DNAmAge, intrinsic DNA-

mAge, or PhenoAge acceleration by diagnosis or sex in ADNI

participants, nor did we find a significant association between

DNAmAge and CSF tau or APOE genotype. Males had signifi-

cantly higher GrimAge acceleration than females, though the ef-

fect size was small ( < 1 year); which corroborates a previous re-

port ( Crimmins et al., 2021 ). A significant interaction between sex

and diagnosis in Skin & Blood age acceleration indicated that fe-

males had accelerated Skin & Blood age in CI as compared to CN,

while there was no effect of diagnosis on male Skin & Blood age

http://www.adni-info.org
https://dnamage.genetics.ucla.edu/
https://dnamage.genetics.ucla.edu/
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acceleration. For a more detailed discussion of these results, see

the Supplementary Information. 

To our knowledge, no other study has similarly tested whether

epigenetic age acceleration metrics in the context of MCI or AD are

sex-specific, and only 1 has probed MCI-associated epigenetic age

acceleration in a peripheral tissue (blood), also with negative find-

ings ( Chouliaras et al., 2018 ). However, our negative results could

arise from sample size limiting statistical power. Power simula-

tions (n = 10 0 0 simulations) indicated that this longitudinal co-

hort is 46.5% powered (95% confidence interval 43.4–49.7) to de-

tect age acceleration differences of ±3.6 years between diagno-

sis groups, the median error of Horvath’s DNAmAge clock. To de-

tect effect sizes of ±1 year between diagnosis groups, our current

study design is 23.4% powered (95% confidence interval 20.8–26.2);

the effect of diagnosis on Skin & Blood age acceleration in our

female-only post-hoc analysis was 1.13 years. A further discussion

of statistical power is presented in the Supplementary Information.

Nonetheless, our 640-participant longitudinal cohort advances the

literature significantly, as it is much larger than the 48-participant

cohort used in the only previous study ( Chouliaras et al., 2018 ) of

epigenetic age acceleration in peripheral tissues in the context of

MCI, which did not consider sex. As larger cohorts with detailed

clinical characterization become available, our results will benefit

from future validation. 

Finally, our finding of accelerated Skin & Blood age in females

even when controlling for age may reflect the faster progression

females exhibit in AD, with higher levels of CSF tau and more

marked cognitive decline than males ( Sohn et al., 2018 ). Future

studies should determine whether similar sex differences in age

acceleration are seen in each stepwise transition from CN to MCI

to AD, and whether these sex differences extend to other tissues,

ideally using the more accurate tissue-specific epigenetic clocks. 

Supplementary materials 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.neurobiolaging.2021.

09.022 . 
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